The impact of Covid-19 on Portuguese Accommodation Sector Default

Magali Costa, Inês Lisboa, Fabriton Fortes

Abstract


Purpose: Worldwide travel restrictions and other measures to mitigate the pandemic situation caused a period of instability for accommodation companies. The consequences of this global phenomenon are still being explored. This study aims to understand the impact of Covid-19 on the probability of not fulfilling its obligations (default risk) and on its determinants in the Portuguese accommodation sector.

Methodology: A Logistic regression on a panel data of 8,688 companies located in Portugal, from 2017 to 2022 was used.

Results: The results show that Covid-19 contributed to an increase in the percentage of defaulters. Moreover, the pandemic situation had an impact on what determines financial difficulties. The determinants are different depending on the period analyzed, and the company’s size.

Originality: This study adds empirical evidence on the impact of non-payment in the accommodation sector in Portugal and, to the best of our knowledge, there is a lack of literature on the impact of Covid-19.

Keywords: Default risk; Accommodation sector; Logistic regression; Covid-19; Portugal.

DOI: 10.58869/EJABM11(2)/07


Full Text:

PDF

References


Abidin, Z. J., Abdullah, N. A. H., & Khaw, K. L.-H. (2021). Bankrupcy Prediction: SMEs in the Hospitality Industry. International Journal of Banking and Finance, 16(2), 51/doi.org/10.32890/ijbf2021.16.2.3.

Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O.,

Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164–184. doi.org/10.1016/j.eswa.2017.10.040.

Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and The Prediction of Corporate Bankruptcy. The Journal of Finance, XCV(9), 561–572.

Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman’s Z-Score Model. Journal of International Financial Management and Accounting, 28(2), 131–171. https://doi.org/10.1111/jifm.12053.

Almeida, S., Mesquita, S., & Carvalho, I. (2022). The covid-19 impacts on the hospitality industry highlights from experts in Portugal. Tourism and hospitality management, 28(1), 61-81. https://doi.org/10.20867/thm.28.1.3

Anguera-Torrell, O., Aznar-Alarcón, J. P., & Vives-Perez, J. (2021). COVID-19: hotel industry response to the pandemic evolution and to the public sector economic measures. Tourism Recreation Research, 46(2), 148–157. https://doi.org/10.1080/02508281.2020.1826225.

Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. https://doi.org/10.1016/j.eswa.2017.04.006.

Beaver, W. H. (1966). Financial Ratios as Predictors of Failure. Journal of Accounting Research, 4, 71–111. http://www.jstor.org/stable/2490171.

Boubaker, S., Goodell, J. W., Kumar, S., & Sureka, R. (2023). COVID-19 and finance scholarship: A systematic and bibliometric analysis. International Review of Financial Analysis, 85, 102458. https://doi.org/10.1016/j.irfa.2022.102458

Brida, J. G., Gómez, D. M., & Segarra, V. (2020). On the empirical relationship between tourism and economic growth. Tourism Management, 81, 104131. https://doi.org/10.1016/j.tourman.2020.104131.

Brilhante, M, F., & Rocha, M. L. (2023). COVID-19 pre-pandemic tourism forecasts and Post-pandemic signs of recovery assessment for Portugal. Research in Globalization, 7, 100167. https://doi.org/10.1016/j.resglo.2023.100167.

Castro, C. (2016). The impact of the great recession and Eurozone debt crises on Portuguese tourism. European Journal of Applied Business and Management, 2(1). https://doi.org/10.58869/EJABM

Cathcart, L., Dufour, A., Rossi, L., & Varotto, S. (2020). The differential impact of leverage on the default risk of small and large firms. Journal of Corporate Finance, 60, 101541. https://doi.org/10.1016/j.jcorpfin.2019.101541.

Chen, K., Guo, W., Kang, Y., & Wang, J. (2022). Does the Deleveraging Policy Increase the Risk of Corporate Debt Default: Evidence from China. Emerging Markets Finance and Trade, 58(3), 601–613. https://doi.org/10.1080/1540496X.2020.1809376.

Costa, M., Lisboa, I., & Gameiro, A. (2022). Is the Financial Report Quality Important in the Default Prediction? SME Portuguese Construction Sector Evidence. Risks, 10(5). https://doi.org/10.3390/risks10050098.

Crespí-Cladera, R., Martín-Oliver, A., & Pascual-Fuster, B. (2021). Financial distress in the hospitality industry during the Covid-19 disaster. Tourism Management, 85. https://doi.org/10.1016/j.tourman.2021.104301.

Dahlstrom, R., Haugland, S. A., Nygaard, A., & Rokkan, A. I. (2009). Governance structures in the hotel industry. Journal of Business Research, 62(8), 841–847. https://doi.org/10.1016/j.jbusres.2007.07.033.

Du, X., Li, W., Ruan, S., & Li, L. (2020). CUS-heterogeneous ensemble-based financial distress prediction for imbalanced dataset with ensemble feature selection. Applied Soft Computing Journal, 97. https://doi.org/10.1016/j.asoc.2020.106758.

Escribano-Navas, M., & Gemar, G. (2021). Gender and bankruptcy: A hotel survival econometric analysis. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126782.

Eurostat (2021). Retrieved from: https://ec.europa.eu/eurostat/statistics .

Fernández-Gámez, M. Á., Cisneros-Ruiz, A. J., & Callejón-Gil, Á. (2016). Applying a probabilistic neural network to hotel bankruptcy prediction. Tourism & Management Studies, 12(1), 40–52. https://doi.org/10.18089/tms.2016.12104.

García, A. del C., & Miguélez, S. M. F. (2021). Predictive potential of the global bankruptcy models in the tourism industry. Tourism and Management Studies, 17(4), 23–31. https://doi.org/10.18089/TMS.2021.170402.

Gémar, G., Moniche, L., & Morales, A. J. (2016). Survival analysis of the Spanish hotel industry. Tourism Management, 54, 428–438. https://doi.org/10.1016/j.tourman.2015.12.012.

Habib, A., Costa, M. D., Huang, H. J., Bhuiyan, M. B. U., & Sun, L. (2020). Determinants and consequences of financial distress: review of the empirical literature. Accounting and Finance, 60(S1), 1023–1075. https://doi.org/10.1111/acfi.12400.

INE (2020, 2021, 2022). Estatísticas do Turismo. Instituto Nacional de Estatísticas.

Jones, S., Johnstone, D., & Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance and Accounting, 44(1–2), 3–34. https://doi.org/10.1111/jbfa.12218.

Kaczmarek, T., Perez, K., Demir, E., & Zaremba, A. (2021). How to survive a pandemic: The corporate resiliency of travel and leisure companies to the COVID-19 outbreak. Tourism Management, 84, 104281. https://doi.org/10.1016/j.tourman.2020.104281

Kim, H., & Gu, Z. (2014). A Logistic Regression Analysis for Predicting Bankruptcy in the Hospitality Industry. Journal of Hospitality Financial Management, 14(1), 24.

https://doi.org/10.1080/10913211.2006.10653812.

Khan, N., Hassan, A. U., Fahad, S., & Naushad, M. (2020). Factors affecting tourism industry and its impacts on global economy of the world. Available at SSRN 3559353.

Kubickova, M., Kirimhan, D., & Li, H. (2019). The impact of crises on hotel rooms' demand in developing economies: The case of terrorist attacks of 9/11 and the global financial crisis of 2008. Journal of Hospitality and Tourism Management, 38, 27-38. https://doi.org/10.1016/j.jhtm.2018.10.002

Kuhzady, S., Seyfi, S., & Béal, L. (2022). Peer-to-peer (P2P) accommodation in the sharing economy: A review. Current Issues in Tourism, 25(19), 3115-3130. https://doi.org/10.1080/13683500.2020.1786505.

Lee, S., Koh, Y., & Kang, K. H. (2011). Moderating effect of capital intensity on the relationship between leverage and financial distress in the US restaurant industry. International Journal of Hospitality Management, 30(2), 429-438.

Li, H., Li, J., Chang, P. C., & Sun, J. (2013). Parametric prediction on default risk of Chinese listed tourism companies by using random oversampling, isomap, and locally linear embeddings on imbalanced samples. International Journal of Hospitality Management, 35, 141-151.

Li, J., Nguyen, T. H. H., & Coca-Stefaniak, J. A. (2021). Coronavirus impacts on post-pandemic planned travel behaviours. Annals of tourism research, 86, 102964.

https://doi.org/10.1016/j.annals.2020.102964

Lisboa, I., Costa, M., & Santos, F. (2021). Analysis of family smes default risk: The portuguese case. Australasian Accounting, Business and Finance Journal, 15(4), 76–92. https://doi.org/10.14453/aabfj.v15i4.5

Más-Ferrando, A., Moreno-Izquierdo, L., Perles-Ribes, J. F., & Rubia, A. (2024). Has COVID-19 changed the factors explaining the occupancy of Airbnb accommodation? Madrid as a case study. Journal of Destination Marketing & Management, 31, 100837. https://doi.org/10.1016/j.jdmm.2023.100837.

Matejić, T., Knežević, S., Arsić, V. B., Obradović, T., Milojević, S., Adamović, M., ... & Špiler, M. (2022). Assessing the impact of the COVID-19 crisis on hotel industry bankruptcy risk through novel forecasting models. Sustainability, 14(8), 4680. https://doi.org/10.3390/su14084680

Napierała, T., Leśniewska-Napierała, K., & Burski, R. (2020). Impact of geographic distribution of COVID-19 cases on hotels’ performances: Case of Polish cities. Sustainability, 12(11), 4697. https://doi.org/10.3390/su12114697.

Nicolau, J. L. (2005). Leveraging profit from the fixed-variable cost ratio: The case of new hotels in Spain. Tourism Management, 26(1), 105–111. https://doi.org/10.1016/j.tourman.2003.08.020

OECD (2022). OECD Tourism Trends and Policies 2022, OECD Publishing, Paris, https://doi.org/10.1787/a8dd3019-en.

Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109. https://doi.org/10.2307/2490395.

Pacheco, L. (2015). SMEs probability of default: the case of the hospitality sector Probabilidade de falência das PME: o caso do sector hoteleiro. Tourism & Management Studies, 11(1).

Pelaez-Verdet, A., & Loscertales-Sanchez, P. (2021). Key ratios for long-term prediction of hotel financial distress and corporate default: Survival analysis for an economic stagnation. Sustainability (Switzerland), 13(3), 1–17. https://doi.org/10.3390/su13031473.

Pindado, J., Rodrigues, L., & de la Torre, C. (2008). Estimating financial distress likelihood. Journal of Business Research, 61(9), 995–1003. https://doi.org/10.1016/j.jbusres.2007.10.006.

Pordata. (2022). Base de Dados de Portugal Contemporâneo. Lisboa: PORDATA, Fundação Francisco Manuel dos Santos.

Sharma, G. D., Thomas, A., & Paul, J. (2021). Reviving tourism industry post-COVID-19: A resilience-based framework. Tourism management perspectives, 37, 100786. https://doi.org/10.1016/j.tmp.2020.100786.

Situm, M. (2023). Financial distress in the Austrian tourism industry: hotels and restaurants analysis. European Journal of Tourism Research, 34, 3411. https://doi.org/10.54055/ejtr.v34i.2992

Srhoj, S., Vitezić, V., Giannozzi, A., & Mikulić, J. (2024). Tourism SME default: A note on predictors. Tourism management, 103, 104910. https://doi.org/10.1016/j.tourman.2024.104910

Statista Research Department. (2021). Retrieved from: https://www.statista.com/statistics/

Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394–419. https://doi.org/10.1016/j.irfa.2013.02.013.

Vicario, R. B., Alaminos, D., Aranda, E., & Gámez, M. A. F. (2020). Deep recurrent convolutional neural network for bankruptcy prediction: A case of the restaurant industry. Sustainability (Switzerland), 12(12). https://doi.org/10.3390/su12125180

Vivel-Búa, M., Lado-Sestayo, R., & Otero-González, L. (2018). Risk determinants in the hotel sector: Risk credit in MSMEs. International Journal of Hospitality Management, 70, 110–119. https://doi.org/10.1016/j.ijhm.2017.11.004.

United Nations World Tourism Organization-UNWTO (2023). Retrieved from: https://www.unwto.org/

Wieprow, J., & Gawlik, A. (2021). The use of discriminant analysis to assess the risk of bankruptcy of enterprises in crisis conditions using the example of the tourism sector in poland. Risks, 9(4). https://doi.org/10.3390/risks9040078.

World Tourism Organization (2020), UNWTO Briefing Note – Tourism and COVID-19, Issue 1 – How are countries supporting tourism recovery?, UNWTO, Madrid, DOI: https://doi.org/10.18111/9789284421893.

WTTC: World Travel and Tourism Council (2023). Retrieved from: https://wttc.org/

Zmijewski, M. E. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22. http://www.jstor.org/stable/2490859.




Copyright (c) 2025 European Journal of Applied Business and Management

 

European Journal of Applied Business and Management

ISSN: 2183-5594

DOI: https://doi.org/10.58869/EJABM

Indexing:

EBSCO | CROSSREF | GOOGLE SCHOLAR | LATINDEX | DRJI | ICI JOURNALS MASTER | REDIB | MIAR